Flow regulation of vascular tone. Its sensitivity to changes in sodium and calcium.
نویسنده
چکیده
Our hypothesis is that flow-through hydraulic drag or shear stresses the extracellular elements in the vascular wall. When the endothelium is intact, this results in the release of endothelium-derived relaxing factor and other substances, eg, prostanoids, from the endothelium. As in some reports, after inhibition of nitric oxide synthase, flow effects are still observed although diminished; the shear effect is extended mechanically to the subendothelial tissues. Shear causes conformational changes in the glycosaminoglycans by extending them from a randomly coiled aggregated state to a more elongated condition along the line of flow. This elongation and the consequent exposure of an increased number of cationic binding sites on the glycosaminoglycans lead to changes in sodium binding. The extent of the conformational change is influenced by the concentration of calcium, an ion that not only competes with sodium at specific binding sites but possibly cross-links the polysaccharide chains of the protein saccharide complex. These complex interactions might account for the cooperative, nonantagonistic interaction of sodium and calcium over the physiological concentration range. Sodium binding is influenced by changes in external sodium concentration, and this presumably accounts for the sodium sensitivity of the flow response. Although glycosaminoglycans are possibly the most studied in this regard, they are not the only candidates. Other extracellular proteins, either in conjunction with glycosaminoglycans or independently, might be involved. By mechanisms not yet identified, these changes are signaled to the cell. We have proposed that in part, at any rate, this may be related to the sodium concentration gradient.
منابع مشابه
Brief Review Flow Regulation of Vascular Tone Its Sensitivity to Changes in Sodium and Calcium
Ahypotheses concerned with the basis of human or animal models of hypertension must provide an explanation of the increase in peripheral vascular resistance — the common attribute of the hypertensive state. They must also provide experimental evidence for, or at least contain a reasonable suggestion regarding the basis of, the decreased diameter of the small arteries and possibly small veins se...
متن کاملRole of Local Nerves and Prostaglandins in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in the Rabbit
The mechanisms underlying cerebral vasodilatation during hypercapnia are not fully understood. To examine the role of nerves and prostaglandins in the regulation of basal blood flow and in hypercapnia-induced vasodilatation in the cerebral blood vessels of rabbit.Cerebral blood flow was measured by laser Doppler flow-meter in 18 NZW rabbits anesthetized with sodium pentobarbital. Tetrodetoxin ...
متن کاملRole of Angiotensin II in Reactive Oxygen Species Production and Modulatory Role of Nitric Oxide (NO) in Vessel Responses to AngII in Acute Joint Inflammation in the Rabbit
Introduction: It has been approved that in most tissues NO production increases during acute inflammation and Angiotensin II has a role in production of reactive oxygen species (ROS). As regulation of joint blood flow (JBF) is important in this situation, this study was performed to investigate the interaction of local Ang II and ROS production and the modulatory role of NO on regulation of JBF...
متن کاملPostnatal maturation attenuates pressure-evoked myogenic tone and stretch-induced increases in Ca2+ in rat cerebral arteries.
Although postnatal maturation potently modulates agonist-induced cerebrovascular contractility, its effects on the mechanisms mediating cerebrovascular myogenic tone remain poorly understood. Because the regulation of calcium influx and myofilament calcium sensitivity change markedly during early postnatal life, the present study tested the general hypothesis that early postnatal maturation inc...
متن کاملEffects of ouabain and low sodium on contractility of human resistance arteries.
Earlier work with rat arteries has resulted in a widely held assumption that resistance artery smooth muscle will not contract on exposure to a reduced transplasmalemmal sodium gradient. In view of the well-recognized low sensitivity of rat tissue to cardiac glycosides, we have investigated the effects of altering the transplasmalemmal sodium gradient on vascular smooth muscle tone by using hum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 22 3 شماره
صفحات -
تاریخ انتشار 1993